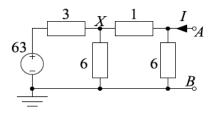
Design Engineering – DE1.3 Electronics 1

Solutions to Problem Sheet 3 (Topics 7 - 8)

Note: In many of the solutions below I have written the voltage at node X as the variable X instead of V_X in order to save writing so many subscripts.


- 1. (a) The Thévenin equivalent voltage equals the open circuit voltage is 4 V (from potential divider). To obtain the Thévenin resistance, we set the voltage source to 0 (making it a short circuit) and find the resistance of the network to be $1||4 = 0.8\Omega$.
 - (b) The open-circuit voltage is -8V (since the 2 A current flows anticlockwise). To obtain the Thévenin resistance, we set the current source to zero (zero current implies an open circuit), so the resultant network has a resistance of 4 Ω .
- 2. KCL at node A gives $\frac{A-5}{1} + \frac{A}{4} I = 0$ from which 5A 20 4I = 0 which we can rearrange to give $A = 4 + 0.8I = V_{Th} + R_{Th}I$. We can also rearrange to give $I = -5 + \frac{1}{0.8}A = -I_{Nor} + \frac{1}{R_{Nor}}A$.

3. (a)

[Method 1 - circuit manipulation] To calculate the Thévenin equivalent, we want to determine the open-circuit voltage and the Thévenin resistance. To determine the open-circuit voltage, we assume that I = 0 and calculate V_{AB} . Since I = 0, we can combine the 1 Ω and 6 Ω resistors to give 7 Ω and then combine this with the 6 Ω resistor in parallel to give $\frac{42}{13}\Omega$. We now have a potential divider so the voltage at point X is $63 \times \frac{42/13}{3+42/13} = \frac{98}{3}$. This is then divided by the 1 Ω and 6 Ω resistors to give an open-circuit voltage of $\frac{98}{3} \times \frac{6}{7} = 28$ V. The Thévenin/ resistance can be found by short-circuiting the voltage source to give 3Ω in parallel with 6Ω which equals 2Ω . This is then in series with 1Ω (to give 3Ω) and finally in parallel with 6Ω to give 2Ω .

(b)

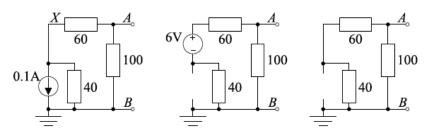
[Method 2 - Nodal Analysis]. We can do KCL at node X (see diagram below) to get $\frac{X-63}{3} + \frac{X}{6} + \frac{X-A}{1} = 0$ which simplifies to 9X - 6A = 126 or 3X - 2A = 42. We now do KCL at A but include an additional input current I as shown in the diagram. This gives $\frac{A-X}{1} + \frac{A}{6} - I = 0$ from which 7A - 6X = 6I. Substituting for 6X = 4A + 84 gives 3A = 84 + 6I or A = 28 + 2I. This gives the Thévenin voltage as 28 and the Thévenin/Norton resistance as 2Ω . Hence the Norton current is 14 A.

4.

(a) KCL @ X gives $\frac{X-14}{1} + \frac{X}{4} + \frac{X}{2} = 0$ from which $7X = 56 \Rightarrow X = 8 \Rightarrow I = \frac{X}{2} = 4$ mA.

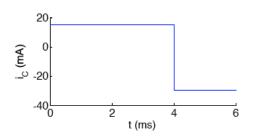
(b)Finding the Thévenin equivalent of the left three components: we consider the two resistors as a potential divider to give $V_{Th} = 14 \times \frac{4}{5} = 11.2 \text{ V}$. Setting the source to zero (short circuit) gives $R_{Th} = 1||4 = 800 \Omega$. Hence $I = \frac{V_{Th}}{R_{Th}+2000} = \frac{11.2}{2.8} = 4 \text{ mA}$.

5.


From question 4) the left three components have a Thévenin equivalent: $V_{Th} = 11.2$ V and $R_{Th} = 800 \Omega$. It follows that the maximum power will be dissipated in R when $R = R_{Th} = 800 \Omega$ (see notes page 5-8). Since the voltage across R will then be $\frac{1}{2}V_{Th}$ the power dissipation will be $\frac{1}{4R_{Th}}V_{Th}^2 = 39.2$ mW.

Setting the voltage source to zero gives us the first diagram. Combining 40||(60 + 100) = 32 so $X = -0.1 \times 32 = -3.2$ V. it follows (potential divider) that $A = -3.2 \times \frac{100}{160} = -2$ V.

Now setting the current source to zero gives the second diagram and we have a potential divider giving $V_{AB} = 6 \times \frac{100}{100+60+40} = 3 \text{ V}.$


Superposition now gives us $V_{AB} = V_{Th} = -2 + 3 = 1 \text{ V}.$

To find R_{Th} we set both sources to zero and find the resultant resistance of $100||(60+40) = 100||100 = 50 \Omega$.

7.

 $i = C \frac{dv}{dt}$. $\frac{dv}{dt}$ is 3000 V/s for the first 4 ms and -6000 V/s for the next 2 ms. So i = +15 or -30 mA.

8.

When x changes from low to high, y will change from high to low. The maximum current is 2 mA so $\frac{dy}{dt} = -\frac{i}{C} = -50 \text{ MV/s}$. So the time to fall from 5 V to 1.5 V is $\frac{3.5}{50} \times 10^{-6} = 70 \text{ ns}$.

2